Gene, Cell and Tissue

Published by: Kowsar

Establishment of Stable Chinese Hamster Ovary Cell Line Capable of Expressing Human Recombinant Hemopexin: A Promising Therapeutic Modality Against Hemolytic Anemia

Marzie Bahadori 1 , Fatemeh Amiri 1 , Marjan Movahed 1 , Amaneh Mohammadi Roushandeh 2 and Mehryar Habibi Roudkenar 3 , 4 , *
Authors Information
1 Department of Biotechnology, Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, IR Iran
2 Department of Anatomical Sciences, School of Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
3 Medical Biotechnology Research Center, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, IR Iran
4 Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
Article information
  • Gene, Cell and Tissue: April 2017, 4 (2); e13360
  • Published Online: April 30, 2017
  • Article Type: Research Article
  • Received: February 26, 2017
  • Revised: April 6, 2017
  • Accepted: April 16, 2017
  • DOI: 10.5812/gct.13360

To Cite: Bahadori M, Amiri F, Movahed M, Mohammadi Roushandeh A, Habibi Roudkenar M. Establishment of Stable Chinese Hamster Ovary Cell Line Capable of Expressing Human Recombinant Hemopexin: A Promising Therapeutic Modality Against Hemolytic Anemia, Gene Cell Tissue. 2017 ; 4(2):e13360. doi: 10.5812/gct.13360.

Abstract
Copyright © 2017, Gene, Cell and Tissue. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
Acknowledgements
References
  • 1. Schaer DJ, Buehler PW, Alayash AI, Belcher JD, Vercellotti GM. Hemolysis and free hemoglobin revisited: exploring hemoglobin and hemin scavengers as a novel class of therapeutic proteins. Blood. 2013; 121(8): 1276-84[DOI][PubMed]
  • 2. Morris CR. Mechanisms of vasculopathy in sickle cell disease and thalassemia. Hematology Am Soc Hematol Educ Program. 2008; : 177-85[DOI][PubMed]
  • 3. Vinchi F, De Franceschi L, Ghigo A, Townes T, Cimino J, Silengo L, et al. Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases. Circulation. 2013; 127(12): 1317-29[DOI][PubMed]
  • 4. Tolosano E, Fagoonee S, Morello N, Vinchi F, Fiorito V. Heme scavenging and the other facets of hemopexin. Antioxid Redox Signal. 2010; 12(2): 305-20[DOI][PubMed]
  • 5. Hvidberg V, Maniecki MB, Jacobsen C, Hojrup P, Moller HJ, Moestrup SK. Identification of the receptor scavenging hemopexin-heme complexes. Blood. 2005; 106(7): 2572-9[DOI][PubMed]
  • 6. Jeney V, Balla G, Balla J. Red blood cell, hemoglobin and heme in the progression of atherosclerosis. Front Physiol. 2014; 5: 379
  • 7. Nielsen MJ, Moller HJ, Moestrup SK. Hemoglobin and heme scavenger receptors. Antioxid Redox Signal. 2010; 12(2): 261-73[DOI][PubMed]
  • 8. Schaer DJ, Vinchi F, Ingoglia G, Tolosano E, Buehler PW. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development. Front Physiol. 2014; 5: 415[DOI][PubMed]
  • 9. Smith A, McCulloh RJ. Hemopexin and haptoglobin: allies against heme toxicity from hemoglobin not contenders. Front Physiol. 2015; 6: 187[DOI][PubMed]
  • 10. Vinchi F, Tolosano E. Therapeutic approaches to limit hemolysis-driven endothelial dysfunction: scavenging free heme to preserve vasculature homeostasis. Oxid Med Cell Longev. 2013; 2013: 396527[DOI][PubMed]
  • 11. Wahl S, Quirolo KC. Current issues in blood transfusion for sickle cell disease. Curr Opin Pediatr. 2009; 21(1): 15-21[DOI][PubMed]
  • 12. Mauk MR, Smith A, Mauk AG. An alternative view of the proposed alternative activities of hemopexin. Protein Sci. 2011; 20(5): 791-805[DOI][PubMed]
  • 13. Wallon UM, Overall CM. The hemopexin-like domain (C domain) of human gelatinase A (matrix metalloproteinase-2) requires Ca2+ for fibronectin and heparin binding. Binding properties of recombinant gelatinase A C domain to extracellular matrix and basement membrane components. J Biol Chem. 1997; 272(11): 7473-81[PubMed]
  • 14. Roeb E, Schleinkofer K, Kernebeck T, Potsch S, Jansen B, Behrmann I, et al. The matrix metalloproteinase 9 (mmp-9) hemopexin domain is a novel gelatin binding domain and acts as an antagonist. J Biol Chem. 2002; 277(52): 50326-32[DOI][PubMed]
  • 15. Satoh T, Satoh H, Iwahara S, Hrkal Z, Peyton DH, Muller-Eberhard U. Roles of heme iron-coordinating histidine residues of human hemopexin expressed in baculovirus-infected insect cells. Proc Natl Acad Sci U S A. 1994; 91(18): 8423-7[PubMed]
  • 16. Bakker WW, Borghuis T, Harmsen MC, van den Berg A, Kema IP, Niezen KE, et al. Protease activity of plasma hemopexin. Kidney Int. 2005; 68(2): 603-10[DOI][PubMed]
  • 17. Walsh G, Jefferis R. Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol. 2006; 24(10): 1241-52[DOI][PubMed]
  • 18. Jayapal KP, Wlaschin KF, Hu W, Yap MGS. Recombinant protein therapeutics from CHO cells-20 years and counting. Chem Engin Prog. 2007; 103(10): 40
  • 19. Schirrmann T, Al-Halabi L, Dubel S, Hust M. Production systems for recombinant antibodies. Front Biosci. 2008; 13: 4576-94[PubMed]
  • 20. Wiberg FC, Rasmussen SK, Frandsen TP, Rasmussen LK, Tengbjerg K, Coljee VW, et al. Production of target-specific recombinant human polyclonal antibodies in mammalian cells. Biotechnol Bioeng. 2006; 94(2): 396-405[DOI][PubMed]
  • 21. Boeger H, Bushnell DA, Davis R, Griesenbeck J, Lorch Y, Strattan JS, et al. Structural basis of eukaryotic gene transcription. FEBS Lett. 2005; 579(4): 899-903[DOI][PubMed]
  • 22. Kim JY, Kim YG, Lee GM. CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol. 2012; 93(3): 917-30[DOI][PubMed]
  • 23. Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev. 2012; 28: 147-75[PubMed]
  • 24. Xu X, Nagarajan H, Lewis NE, Pan S, Cai Z, Liu X, et al. The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat Biotechnol. 2011; 29(8): 735-41[DOI][PubMed]
  • 25. Lai T, Yang Y, Ng SK. Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel). 2013; 6(5): 579-603[DOI][PubMed]
  • 26. Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol. 2004; 22(11): 1393-8[DOI][PubMed]
  • 27. Kaufman RJ. Selection and coamplification of heterologous genes in mammalian cells. Methods Enzymol. 1990; 185: 537-66[PubMed]
  • 28. Pilbrough W, Munro TP, Gray P. Intraclonal protein expression heterogeneity in recombinant CHO cells. PLoS One. 2009; 4(12)[DOI][PubMed]
  • 29. Poli V, Cortese R. Interleukin 6 induces a liver-specific nuclear protein that binds to the promoter of acute-phase genes. Proc Natl Acad Sci U S A. 1989; 86(21): 8202-6[PubMed]
  • 30. Kapojos JJ, van den Berg A, van Goor H, te Loo MW, Poelstra K, Borghuis T, et al. Production of hemopexin by TNF-alpha stimulated human mesangial cells. Kidney Int. 2003; 63(5): 1681-6[DOI][PubMed]
  • 31. Schaer DJ, Buehler PW. Cell-free hemoglobin and its scavenger proteins: new disease models leading the way to targeted therapies. Cold Spring Harb Perspect Med. 2013; 3(6)[DOI][PubMed]
  • 32. Baek JH, D'Agnillo F, Vallelian F, Pereira CP, Williams MC, Jia Y, et al. Hemoglobin-driven pathophysiology is an in vivo consequence of the red blood cell storage lesion that can be attenuated in guinea pigs by haptoglobin therapy. J Clin Invest. 2012; 122(4): 1444-58[DOI][PubMed]
  • 33. Khow O, Suntrarachun S. Strategies for production of active eukaryotic proteins in bacterial expression system. Asian Pac J Trop Biomed. 2012; 2(2): 159-62[DOI][PubMed]
  • 34. Eiberle MK, Jungbauer A. Technical refolding of proteins: Do we have freedom to operate? Biotechnol J. 2010; 5(6): 547-59[DOI][PubMed]
  • 35. Gerstein AS. Molecular biology problem solver: a laboratory guide. 2004;
  • 36. Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. Heterologous protein production using the Pichia pastoris expression system. Yeast. 2005; 22(4): 249-70[DOI][PubMed]
  • 37. Paridar M, Amirizadeh N, Habibi Roudkenar M, Amiri F, Abolghasemi H, Jalili MA. Expression of Recombinant Coagulation Factor IX in Human Amniotic Membrane-derived Mesenchymal Stem Cells: A New Strategy to Gene Therapy of Hemophilia B. Iran J Blood Cancer. 2014; 6(3): 133-41
  • 38. Li P, Anumanthan A, Gao XG, Ilangovan K, Suzara VV, Duzgunes N, et al. Expression of recombinant proteins in Pichia pastoris. Appl Biochem Biotechnol. 2007; 142(2): 105-24[PubMed]
  • 39. Fischer S, Charara N, Gerber A, Wolfel J, Schiedner G, Voedisch B, et al. Transient recombinant protein expression in a human amniocyte cell line: the CAP-T(R) cell system. Biotechnol Bioeng. 2012; 109(9): 2250-61[DOI][PubMed]
  • 40. Son KK, Patel DH, Tkach D, Park A. Cationic liposome and plasmid DNA complexes formed in serum-free medium under optimum transfection condition are negatively charged. Biochim Biophys Acta. 2000; 1466(1-2): 11-5[PubMed]
  • 41. A. Longo P , Kavran JM, Kim MS, Leahy DJ. Generating mammalian stable cell lines by electroporation. Methods Enzymol. 2013; 529: 209-26[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments