Gene, Cell and Tissue

Published by: Kowsar

Spinal Cord Injury Repair by Intrathecal Infusion of Stromal Cell-Derived Factor-1/CXC Chemokine Receptor 4 in a Rat Model

Zoleikha Golipoor 1 , Sara Soleimani Asl 1 , Fereshteh Mehraein 2 , Akram Alizadeh 3 , Ebrahim Asadi 4 and Maryam Sarbishegi 5 , *
Authors Information
1 Department of Anatomy, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, IR Iran
2 Department of Anatomy, Faculty of Medicine, Iran University of Medical Sciences, Tehran, IR Iran
3 Cellular and Molecular Research Center, Shahr-e-Kord University of Medical Sciences, Shahr-e-Kord, IR Iran
4 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
5 Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, IR Iran
Article information
  • Gene, Cell and Tissue: April 01, 2016, 3 (2); e36386
  • Published Online: March 29, 2016
  • Article Type: Research Article
  • Received: January 16, 2016
  • Revised: March 5, 2016
  • Accepted: March 7, 2016
  • DOI: 10.17795/gct-36386

To Cite: Golipoor Z, Soleimani Asl S, Mehraein F, Alizadeh A, Asadi E, et al. Spinal Cord Injury Repair by Intrathecal Infusion of Stromal Cell-Derived Factor-1/CXC Chemokine Receptor 4 in a Rat Model, Gene Cell Tissue. 2016 ; 3(2):e36386. doi: 10.17795/gct-36386.

Abstract
Copyright © 2016, Zahedan University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Zhang H, Trivedi A, Lee JU, Lohela M, Lee SM, Fandel TM, et al. Matrix metalloproteinase-9 and stromal cell-derived factor-1 act synergistically to support migration of blood-borne monocytes into the injured spinal cord. J Neurosci. 2011; 31(44): 15894-903[DOI][PubMed]
  • 2. Shen X, Wang S, Wang H, Liang M, Xiao L, Wang Z. The role of SDF-1/CXCR4 axis in ovarian cancer metastasis. J Huazhong Univ Sci Technolog Med Sci. 2009; 29(3): 363-7[DOI][PubMed]
  • 3. Zendedel A, Johann S, Mehrabi S, Joghataei MT, Hassanzadeh G, Kipp M, et al. Activation and Regulation of NLRP3 Inflammasome by Intrathecal Application of SDF-1a in a Spinal Cord Injury Model. Mol Neurobiol. 2015; [DOI][PubMed]
  • 4. Luo Y, Cai J, Xue H, Miura T, Rao MS. Functional SDF1 alpha/CXCR4 signaling in the developing spinal cord. J Neurochem. 2005; 93(2): 452-62[DOI][PubMed]
  • 5. Zendedel A, Nobakht M, Bakhtiyari M, Beyer C, Kipp M, Baazm M, et al. Stromal cell-derived factor-1 alpha (SDF-1alpha) improves neural recovery after spinal cord contusion in rats. Brain Res. 2012; 1473: 214-26[DOI][PubMed]
  • 6. Jaerve A, Bosse F, Muller HW. SDF-1/CXCL12: its role in spinal cord injury. Int J Biochem Cell Biol. 2012; 44(3): 452-6[DOI][PubMed]
  • 7. Kucia M, Jankowski K, Reca R, Wysoczynski M, Bandura L, Allendorf DJ, et al. CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol. 2004; 35(3): 233-45[PubMed]
  • 8. Li J, Guo W, Xiong M, Han H, Chen J, Mao D, et al. Effect of SDF-1/CXCR4 axis on the migration of transplanted bone mesenchymal stem cells mobilized by erythropoietin toward lesion sites following spinal cord injury. Int J Mol Med. 2015; [DOI]
  • 9. Knerlich-Lukoschus F, Juraschek M, Blomer U, Lucius R, Mehdorn HM, Held-Feindt J. Force-dependent development of neuropathic central pain and time-related CCL2/CCR2 expression after graded spinal cord contusion injuries of the rat. J Neurotrauma. 2008; 25(5): 427-48[DOI][PubMed]
  • 10. Ma J, Li X, Yi B, Yao H, Zhao H, Zhang Y, et al. Transplanted iNSCs migrate through SDF-1/CXCR4 signaling to promote neural recovery in a rat model of spinal cord injury. Neuroreport. 2014; 25(6): 391-7[DOI][PubMed]
  • 11. Tysseling VM, Mithal D, Sahni V, Birch D, Jung H, Belmadani A, et al. SDF1 in the dorsal corticospinal tract promotes CXCR4+ cell migration after spinal cord injury. J Neuroinflammation. 2011; 8: 16[DOI][PubMed]
  • 12. Joshi M, Fehlings MG. Development and characterization of a novel, graded model of clip compressive spinal cord injury in the mouse: Part 1. Clip design, behavioral outcomes, and histopathology. J Neurotrauma. 2002; 19(2): 175-90[DOI][PubMed]
  • 13. Lee TH. Functional effect of mouse embryonic stem cell implantation after spinal cord injury. J Exerc Rehabil. 2013; 9(2): 230-3[DOI][PubMed]
  • 14. Mehraein F, Sarbishegi M, Golipoor Z. Different effects of olive leaf extract on antioxidant enzyme activities in midbrain and dopaminergic neurons of Substantia Nigra in young and old rats. Histol Histopathol. 2016; 31(4): 425-31[DOI][PubMed]
  • 15. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001; 25(4): 402-8[DOI][PubMed]
  • 16. Sedy J, Urdzikova L, Jendelova P, Sykova E. Methods for behavioral testing of spinal cord injured rats. Neurosci Biobehav Rev. 2008; 32(3): 550-80[DOI][PubMed]
  • 17. Askari AT, Unzek S, Popovic ZB, Goldman CK, Forudi F, Kiedrowski M, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003; 362(9385): 697-703[DOI][PubMed]
  • 18. Hiasa K, Ishibashi M, Ohtani K, Inoue S, Zhao Q, Kitamoto S, et al. Gene transfer of stromal cell-derived factor-1alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation. 2004; 109(20): 2454-61[DOI][PubMed]
  • 19. Tang YL, Qian K, Zhang YC, Shen L, Phillips MI. Mobilizing of haematopoietic stem cells to ischemic myocardium by plasmid-mediated stromal-cell-derived factor-1α treatment. Regulatory Peptides. 2005; 125(1): 1-8
  • 20. Moepps B, Braun M, Knopfle K, Dillinger K, Knochel W, Gierschik P. Characterization of a Xenopus laevis CXC chemokine receptor 4: implications for hematopoietic cell development in the vertebrate embryo. Eur J Immunol. 2000; 30(10): 2924-34[DOI][PubMed]
  • 21. Shirozu M, Nakano T, Inazawa J, Tashiro K, Tada H, Shinohara T, et al. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics. 1995; 28(3): 495-500[DOI][PubMed]
  • 22. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996; 382(6592): 635-8[DOI][PubMed]
  • 23. Ohtani Y, Minami M, Kawaguchi N, Nishiyori A, Yamamoto J, Takami S, et al. Expression of stromal cell-derived factor-1 and CXCR4 chemokine receptor mRNAs in cultured rat glial and neuronal cells. Neurosci Lett. 1998; 249(2-3): 163-6[PubMed]
  • 24. Bajetto A, Bonavia R, Barbero S, Florio T, Costa A, Schettini G. Expression of chemokine receptors in the rat brain. Ann N Y Acad Sci. 1999; 876: 201-9[PubMed]
  • 25. Miller JT, Bartley JH, Wimborne HJ, Walker AL, Hess DC, Hill WD, et al. The neuroblast and angioblast chemotaxic factor SDF-1 (CXCL12) expression is briefly up regulated by reactive astrocytes in brain following neonatal hypoxic-ischemic injury. BMC Neurosci. 2005; 6: 63[DOI][PubMed]
  • 26. Hill WD, Hess DC, Martin-Studdard A, Carothers JJ, Zheng J, Hale D, et al. SDF-1 (CXCL12) is upregulated in the ischemic penumbra following stroke: association with bone marrow cell homing to injury. J Neuropathol Exp Neurol. 2004; 63(1): 84-96[PubMed]
  • 27. Delezay O, Koch N, Yahi N, Hammache D, Tourres C, Tamalet C, et al. Co-expression of CXCR4/fusin and galactosylceramide in the human intestinal epithelial cell line HT-29. AIDS. 1997; 11(11): 1311-8[PubMed]
  • 28. Forster R, Kremmer E, Schubel A, Breitfeld D, Kleinschmidt A, Nerl C, et al. Intracellular and surface expression of the HIV-1 coreceptor CXCR4/fusin on various leukocyte subsets: rapid internalization and recycling upon activation. J Immunol. 1998; 160(3): 1522-31[PubMed]
  • 29. Gupta SK, Lysko PG, Pillarisetti K, Ohlstein E, Stadel JM. Chemokine receptors in human endothelial cells. Functional expression of CXCR4 and its transcriptional regulation by inflammatory cytokines. J Biol Chem. 1998; 273(7): 4282-7[PubMed]
  • 30. Li Z, Kato T, Kawagishi K, Fukushima N, Yokouchi K, Moriizumi T. Cell dynamics of calretinin-immunoreactive neurons in the rostral migratory stream after ibotenate-induced lesions in the forebrain. Neurosci Res. 2002; 42(2): 123-32[PubMed]
  • 31. Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O. Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med. 2002; 8(9): 963-70[DOI][PubMed]
  • 32. Iwai M, Sato K, Kamada H, Omori N, Nagano I, Shoji M, et al. Temporal profile of stem cell division, migration, and differentiation from subventricular zone to olfactory bulb after transient forebrain ischemia in gerbils. J Cereb Blood Flow Metab. 2003; 23(3): 331-41[PubMed]
  • 33. Wang Y, Deng Y, Zhou GQ. SDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res. 2008; 1195: 104-12[DOI][PubMed]
  • 34. Rosenkranz K, Kumbruch S, Lebermann K, Marschner K, Jensen A, Dermietzel R, et al. The chemokine SDF-1/CXCL12 contributes to the 'homing' of umbilical cord blood cells to a hypoxic-ischemic lesion in the rat brain. J Neurosci Res. 2010; 88(6): 1223-33[DOI][PubMed]
  • 35. Zheng H, Dai T, Zhou B, Zhu J, Huang H, Wang M, et al. SDF-1alpha/CXCR4 decreases endothelial progenitor cells apoptosis under serum deprivation by PI3K/Akt/eNOS pathway. Atherosclerosis. 2008; 201(1): 36-42[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments