Gene, Cell and Tissue

Published by: Kowsar

Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in Rat Spinal Cord and Midbrain During Induction of Morphine Analgesic Tolerance

Shamseddin Ahmadi 1 , * and Asrin Rashidi 1
Authors Information
1 Department of Biological Science, Faculty of Science, University of Kurdistan, Sanandaj, IR Iran
Article information
  • Gene, Cell and Tissue: July 01, 2016, 3 (3); e38142
  • Published Online: July 9, 2016
  • Article Type: Research Article
  • Received: April 2, 2016
  • Revised: June 4, 2016
  • Accepted: June 18, 2016
  • DOI: 10.17795/gct-38142

To Cite: Ahmadi S, Rashidi A. Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIα in Rat Spinal Cord and Midbrain During Induction of Morphine Analgesic Tolerance, Gene Cell Tissue. 2016 ; 3(3):e38142. doi: 10.17795/gct-38142.

Abstract
Copyright © 2016, Zahedan University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. DuPen A, Shen D, Ersek M. Mechanisms of opioid-induced tolerance and hyperalgesia. Pain Manag Nurs. 2007; 8(3): 113-21[DOI][PubMed]
  • 2. He L, Kim JA, Whistler JL. Biomarkers of morphine tolerance and dependence are prevented by morphine-induced endocytosis of a mutant mu-opioid receptor. FASEB J. 2009; 23(12): 4327-34[DOI][PubMed]
  • 3. Yang C, Chen Y, Tang L, Wang ZJ. Haloperidol disrupts opioid-antinociceptive tolerance and physical dependence. J Pharmacol Exp Ther. 2011; 338(1): 164-72[DOI][PubMed]
  • 4. Shukla PK, Tang L, Wang ZJ. Phosphorylation of neurogranin, protein kinase C, and Ca2+/calmodulin dependent protein kinase II in opioid tolerance and dependence. Neurosci Lett. 2006; 404(3): 266-9[DOI][PubMed]
  • 5. Williams JT, Ingram SL, Henderson G, Chavkin C, von Zastrow M, Schulz S, et al. Regulation of mu-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol Rev. 2013; 65(1): 223-54[DOI][PubMed]
  • 6. Lu Z, Xu J, Xu M, Pasternak GW, Pan YX. Morphine regulates expression of mu-opioid receptor MOR-1A, an intron-retention carboxyl terminal splice variant of the mu-opioid receptor (OPRM1) gene via miR-103/miR-107. Mol Pharmacol. 2014; 85(2): 368-80[DOI][PubMed]
  • 7. Hovaguimian A, Gibbons CH. Diagnosis and treatment of pain in small-fiber neuropathy. Curr Pain Headache Rep. 2011; 15(3): 193-200[DOI][PubMed]
  • 8. Liu YC, Berta T, Liu T, Tan PH, Ji RR. Acute morphine induces matrix metalloproteinase-9 up-regulation in primary sensory neurons to mask opioid-induced analgesia in mice. Mol Pain. 2012; 8: 19[DOI][PubMed]
  • 9. Koch T, Hollt V. Role of receptor internalization in opioid tolerance and dependence. Pharmacol Ther. 2008; 117(2): 199-206[DOI][PubMed]
  • 10. Martini L, Whistler JL. The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence. Curr Opin Neurobiol. 2007; 17(5): 556-64[DOI][PubMed]
  • 11. Adam F, Bonnet F, Le Bars D. Tolerance to morphine analgesia: evidence for stimulus intensity as a key factor and complete reversal by a glycine site-specific NMDA antagonist. Neuropharmacology. 2006; 51(2): 191-202[DOI][PubMed]
  • 12. Guo RX, Zhang M, Liu W, Zhao CM, Cui Y, Wang CH, et al. NMDA receptors are involved in upstream of the spinal JNK activation in morphine antinociceptive tolerance. Neurosci Lett. 2009; 467(2): 95-9[DOI][PubMed]
  • 13. Mao J. NMDA and opioid receptors: their interactions in antinociception, tolerance and neuroplasticity. Brain Res Brain Res Rev. 1999; 30(3): 289-304[PubMed]
  • 14. Griffith LC. Calcium/calmodulin-dependent protein kinase II: an unforgettable kinase. J Neurosci. 2004; 24(39): 8391-3[DOI][PubMed]
  • 15. Gaertner TR, Kolodziej SJ, Wang D, Kobayashi R, Koomen JM, Stoops JK, et al. Comparative analyses of the three-dimensional structures and enzymatic properties of alpha, beta, gamma and delta isoforms of Ca2+-calmodulin-dependent protein kinase II. J Biol Chem. 2004; 279(13): 12484-94[DOI][PubMed]
  • 16. Tombes RM, Faison MO, Turbeville JM. Organization and evolution of multifunctional Ca(2+)/CaM-dependent protein kinase genes. Gene. 2003; 322: 17-31[PubMed]
  • 17. Erondu NE, Kennedy MB. Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci. 1985; 5(12): 3270-7[PubMed]
  • 18. Takaishi T, Saito N, Tanaka C. Evidence for distinct neuronal localization of gamma and delta subunits of Ca2+/calmodulin-dependent protein kinase II in the rat brain. J Neurochem. 1992; 58(5): 1971-4[PubMed]
  • 19. Kolb SJ, Hudmon A, Ginsberg TR, Waxham MN. Identification of domains essential for the assembly of calcium/calmodulin-dependent protein kinase II holoenzymes. J Biol Chem. 1998; 273(47): 31555-64[PubMed]
  • 20. Wu X, McMurray CT. Calmodulin kinase II attenuation of gene transcription by preventing cAMP response element-binding protein (CREB) dimerization and binding of the CREB-binding protein. J Biol Chem. 2001; 276(3): 1735-41[DOI][PubMed]
  • 21. Raehal KM, Schmid CL, Groer CE, Bohn LM. Functional selectivity at the mu-opioid receptor: implications for understanding opioid analgesia and tolerance. Pharmacol Rev. 2011; 63(4): 1001-19[DOI][PubMed]
  • 22. Wang Q, Zhao X, Li S, Han S, Peng Z, Li J. Phosphorylated CaMKII levels increase in rat central nervous system after large-dose intravenous remifentanil. Med Sci Monit Basic Res. 2013; 19: 118-25[DOI][PubMed]
  • 23. Yan JZ, Xu Z, Ren SQ, Hu B, Yao W, Wang SH, et al. Protein kinase C promotes N-methyl-D-aspartate (NMDA) receptor trafficking by indirectly triggering calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation. J Biol Chem. 2011; 286(28): 25187-200[DOI][PubMed]
  • 24. Tang L, Shukla PK, Wang ZJ. Trifluoperazine, an orally available clinically used drug, disrupts opioid antinociceptive tolerance. Neurosci Lett. 2006; 397(1-2): 1-4[DOI][PubMed]
  • 25. Wang ZJ, Tang L, Xin L. Reversal of morphine antinociceptive tolerance by acute spinal inhibition of Ca(2+)/calmodulin-dependent protein kinase II. Eur J Pharmacol. 2003; 465(1-2): 199-200[PubMed]
  • 26. Tang L, Shukla PK, Wang LX, Wang ZJ. Reversal of morphine antinociceptive tolerance and dependence by the acute supraspinal inhibition of Ca(2+)/calmodulin-dependent protein kinase II. J Pharmacol Exp Ther. 2006; 317(2): 901-9[DOI][PubMed]
  • 27. Fan GH, Wang LZ, Qiu HC, Ma L, Pei G. Inhibition of calcium/calmodulin-dependent protein kinase II in rat hippocampus attenuates morphine tolerance and dependence. Mol Pharmacol. 1999; 56(1): 39-45[PubMed]
  • 28. Kuhar MJ, Joyce A, Dominguez G. Genes in drug abuse. Drug Alcohol Depend. 2001; 62(3): 157-62
  • 29. Rodriguez-Munoz M, Sanchez-Blazquez P, Vicente-Sanchez A, Berrocoso E, Garzon J. The mu-opioid receptor and the NMDA receptor associate in PAG neurons: implications in pain control. Neuropsychopharmacology. 2012; 37(2): 338-49[DOI][PubMed]
  • 30. Harada S, Nakamoto K, Tokuyama S. The involvement of midbrain astrocyte in the development of morphine tolerance. Life Sci. 2013; 93(16): 573-8[DOI][PubMed]
  • 31. Ahmadi S, Amiri S, Rafieenia F, Rostamzadeh J. Gene Expression Profile of Calcium/Calmodulin-Dependent Protein Kinase IIalpha in Rat's Hippocampus during Morphine Withdrawal. Basic Clin Neurosci. 2013; 4(2): 146-52[PubMed]
  • 32. Ahmadi S, Karami Z, Mohammadian A, Khosrobakhsh F, Rostamzadeh J. Cholestasis induced antinociception and decreased gene expression of MOR1 in rat brain. Neuroscience. 2015; 284: 78-86[DOI][PubMed]
  • 33. Ahmadi S, Poureidi M, Rostamzadeh J. Hepatic encephalopathy induces site-specific changes in gene expression of GluN1 subunit of NMDA receptor in rat brain. Metab Brain Dis. 2015; 30(4): 1035-41[DOI][PubMed]
  • 34. Wang Z, Chabot JG, Quirion R. On the possible role of ERK, p38 and CaMKII in the regulation of CGRP expression in morphine-tolerant rats. Mol Pain. 2011; 7: 68[DOI][PubMed]
  • 35. Mao J, Sung B, Ji RR, Lim G. Chronic morphine induces downregulation of spinal glutamate transporters: implications in morphine tolerance and abnormal pain sensitivity. J Neurosci. 2002; 22(18): 8312-23[PubMed]
  • 36. Chen Y, Jiang Y, Yue W, Zhou Y, Lu L, Ma L. Chronic, but not acute morphine treatment, up-regulates alpha-Ca2+/calmodulin dependent protein kinase II gene expression in rat brain. Neurochem Res. 2008; 33(10): 2092-8[DOI][PubMed]
  • 37. Zollner C, Stein C. Opioids. Handb Exp Pharmacol. 2007; (177): 31-63[PubMed]
  • 38. Yokota S, Yamamoto M, Moriya T, Akiyama M, Fukunaga K, Miyamoto E, et al. Involvement of calcium-calmodulin protein kinase but not mitogen-activated protein kinase in light-induced phase delays and Per gene expression in the suprachiasmatic nucleus of the hamster. J Neurochem. 2001; 77(2): 618-27[PubMed]
  • 39. Liang D, Li X, Clark JD. Increased expression of Ca2+/calmodulin-dependent protein kinase II alpha during chronic morphine exposure. Neuroscience. 2004; 123(3): 769-75[PubMed]
  • 40. Easton AC, Lucchesi W, Lourdusamy A, Lenz B, Solati J, Golub Y, et al. alphaCaMKII autophosphorylation controls the establishment of alcohol drinking behavior. Neuropsychopharmacology. 2013; 38(9): 1636-47[DOI][PubMed]
  • 41. Rodriguez-Munoz M, de la Torre-Madrid E, Gaitan G, Sanchez-Blazquez P, Garzon J. RGS14 prevents morphine from internalizing Mu-opioid receptors in periaqueductal gray neurons. Cell Signal. 2007; 19(12): 2558-71[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments