Gene, Cell and Tissue

Published by: Kowsar

Novel Poly (ADP-Ribose) Polymerase Inhibitor AZD2461 Combined with Valproic Acid Exerts Mild Antagonistic Effects in Hela Cells

Saman Sargazi 1 , 2 , Ramin Saravani 3 , 4 , * , Javad Zavar Reza 2 , 5 , ** , Hossein Zarei Jaliani 6 , Shekoufeh Mirinejad 4 , Mahdiyeh Moudi 7 and Hamidreza Galavi 3 , 4
Authors Information
1 International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
2 Biotechnology Research Center, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
3 Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
4 Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
5 Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
6 Protein Engineering Laboratory, Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
7 Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
Corresponding Authors:
Article information
  • Gene, Cell and Tissue: July 2018, 5 (3); e81645
  • Published Online: October 1, 2018
  • Article Type: Research Article
  • Received: July 2, 2018
  • Revised: August 19, 2018
  • Accepted: September 15, 2018
  • DOI: 10.5812/gct.81645

To Cite: Sargazi S, Saravani R, Zavar Reza J , Zarei Jaliani H , Mirinejad S , et al. Novel Poly (ADP-Ribose) Polymerase Inhibitor AZD2461 Combined with Valproic Acid Exerts Mild Antagonistic Effects in Hela Cells, Gene Cell Tissue. 2018 ; 5(3):e81645. doi: 10.5812/gct.81645.

Abstract
Copyright © 2018, Gene, Cell and Tissue. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
Footnotes
References
  • 1. Alvarez-Salas LM, DiPaolo JA. Molecular approaches to cervical cancer therapy. Curr Drug Discov Technol. 2007;4(3):208-19. doi: 10.2174/157016307782109661. [PubMed: 17986003].
  • 2. Li HN, Nie FF, Liu W, Dai QS, Lu N, Qi Q, et al. Apoptosis induction of oroxylin A in human cervical cancer HeLa cell line in vitro and in vivo. Toxicology. 2009;257(1-2):80-5. doi: 10.1016/j.tox.2008.12.011. [PubMed: 19135124].
  • 3. Brockbank E, Kokka F, Bryant A, Pomel C, Reynolds K. Pre-treatment surgical para-aortic lymph node assessment in locally advanced cervical cancer. Cochrane Database Syst Rev. 2013;(3). CD008217. doi: 10.1002/14651858.CD008217.pub3. [PubMed: 23543561].
  • 4. Kim HJ, Song ES, Hwang TS. Higher incidence of p53 mutation in cervical carcinomas with intermediate-risk HPV infection. Eur J Obstet Gynecol Reprod Biol. 2001;98(2):213-8. doi: 10.1016/S0301-2115(01)00309-8. [PubMed: 11574134].
  • 5. Zhang X, Zhang L, Tian C, Yang L, Wang Z. Genetic variants and risk of cervical cancer: Epidemiological evidence, meta-analysis and research review. BJOG. 2014;121(6):664-74. doi: 10.1111/1471-0528.12638. [PubMed: 24548744].
  • 6. Yeh PY, Chuang SE, Yeh KH, Song YC, Ea CK, Cheng AL. Increase of the resistance of human cervical carcinoma cells to cisplatin by inhibition of the MEK to ERK signaling pathway partly via enhancement of anticancer drug-induced NFκB activation. Biochem Pharmacol. 2002;63(8):1423-30. doi: 10.1016/s0006-2952(02)00908-5.
  • 7. Landry JJ, Pyl PT, Rausch T, Zichner T, Tekkedil MM, Stutz AM, et al. The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda). 2013;3(8):1213-24. doi: 10.1534/g3.113.005777. [PubMed: 23550136]. [PubMed Central: PMC3737162].
  • 8. Rich T, Allen RL, Wyllie AH. Defying death after DNA damage. Nature. 2000;407(6805):777-83. doi: 10.1038/35037717. [PubMed: 11048728].
  • 9. Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med. 2006;12(9):440-50. doi: 10.1016/j.molmed.2006.07.007. [PubMed: 16899408].
  • 10. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8(3):193-204. doi: 10.1038/nrc2342. [PubMed: 18256616].
  • 11. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917-21. doi: 10.1038/nature03445. [PubMed: 15829967].
  • 12. Lord CJ, Ashworth A. Targeted therapy for cancer using PARP inhibitors. Curr Opin Pharmacol. 2008;8(4):363-9. doi: 10.1016/j.coph.2008.06.016. [PubMed: 18644251].
  • 13. Kim G, Ison G, McKee AE, Zhang H, Tang S, Gwise T, et al. FDA approval summary: Olaparib monotherapy in patients with deleterious germline brca-mutated advanced ovarian cancer treated with three or more lines of chemotherapy. Clin Cancer Res. 2015;21(19):4257-61. doi: 10.1158/1078-0432.CCR-15-0887. [PubMed: 26187614].
  • 14. Rytelewski M, Maleki Vareki S, Mangala LS, Romanow L, Jiang D, Pradeep S, et al. Reciprocal positive selection for weakness - preventing olaparib resistance by inhibiting BRCA2. Oncotarget. 2016;7(15):20825-39. doi: 10.18632/oncotarget.7883. [PubMed: 26959114]. [PubMed Central: PMC4991495].
  • 15. Oplustil O'Connor L, Rulten SL, Cranston AN, Odedra R, Brown H, Jaspers JE, et al. The PARP inhibitor AZD2461 provides insights into the role of PARP3 inhibition for both synthetic lethality and tolerability with chemotherapy in preclinical models. Cancer Res. 2016;76(20):6084-94. doi: 10.1158/0008-5472.CAN-15-3240. [PubMed: 27550455].
  • 16. Blatter S, Rottenberg S. Minimal residual disease in cancer therapy--Small things make all the difference. Drug Resist Updat. 2015;21-22:1-10. doi: 10.1016/j.drup.2015.08.003. [PubMed: 26307504].
  • 17. West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014;124(1):30-9. doi: 10.1172/JCI69738. [PubMed: 24382387]. [PubMed Central: PMC3871231].
  • 18. Xia Q, Sung J, Chowdhury W, Chen CL, Hoti N, Shabbeer S, et al. Chronic administration of valproic acid inhibits prostate cancer cell growth in vitro and in vivo. Cancer Res. 2006;66(14):7237-44. doi: 10.1158/0008-5472.CAN-05-0487. [PubMed: 16849572].
  • 19. Han BR, You BR, Park WH. Valproic acid inhibits the growth of HeLa cervical cancer cells via caspase-dependent apoptosis. Oncol Rep. 2013;30(6):2999-3005. doi: 10.3892/or.2013.2747. [PubMed: 24064712].
  • 20. Feng D, Cao Z, Li C, Zhang L, Zhou Y, Ma J, et al. Combination of valproic acid and ATRA restores RARbeta2 expression and induces differentiation in cervical cancer through the PI3K/Akt pathway. Curr Mol Med. 2012;12(3):342-54. doi: 10.2174/156652412799218949. [PubMed: 22229477].
  • 21. Lu Y, Liu Y, Pang Y, Pacak K, Yang C. Double-barreled gun: Combination of PARP inhibitor with conventional chemotherapy. Pharmacol Ther. 2018;188:168-75. doi: 10.1016/j.pharmthera.2018.03.006. [PubMed: 29621593]. [PubMed Central: PMC6067963].
  • 22. Wooster R, Weber BL. Breast and ovarian cancer. N Engl J Med. 2003;348(23):2339-47. doi: 10.1056/NEJMra012284. [PubMed: 12788999].
  • 23. Morgan DML. Tetrazolium (MTT) assay for cellular viability and activity. In: Morgan DML, editor. Polyamine protocol. Springer; 1998. p. 179-84.
  • 24. Chou TC, Talalay P. Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 1984;22:27-55. doi: 10.1016/0065-2571(84)90007-4.
  • 25. Zellweger R, Dalcher D, Mutreja K, Berti M, Schmid JA, Herrador R, et al. Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J Cell Biol. 2015;208(5):563-79. doi: 10.1083/jcb.201406099. [PubMed: 25733714]. [PubMed Central: PMC4347635].
  • 26. McCabe N, Turner NC, Lord CJ, Kluzek K, Bialkowska A, Swift S, et al. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 2006;66(16):8109-15. doi: 10.1158/0008-5472.CAN-06-0140. [PubMed: 16912188].
  • 27. Loser DA, Shibata A, Shibata AK, Woodbine LJ, Jeggo PA, Chalmers AJ. Sensitization to radiation and alkylating agents by inhibitors of poly(ADP-ribose) polymerase is enhanced in cells deficient in DNA double-strand break repair. Mol Cancer Ther. 2010;9(6):1775-87. doi: 10.1158/1535-7163.MCT-09-1027. [PubMed: 20530711]. [PubMed Central: PMC2884153].
  • 28. Dejligbjerg M, Grauslund M, Litman T, Collins L, Qian X, Jeffers M, et al. Differential effects of class I isoform histone deacetylase depletion and enzymatic inhibition by belinostat or valproic acid in HeLa cells. Mol Cancer. 2008;7:70. doi: 10.1186/1476-4598-7-70. [PubMed: 18789133]. [PubMed Central: PMC2553797].
  • 29. Deben C, Lardon F, Wouters A, Op de Beeck K, Van den Bossche J, Jacobs J, et al. APR-246 (PRIMA-1(MET)) strongly synergizes with AZD2281 (olaparib) induced PARP inhibition to induce apoptosis in non-small cell lung cancer cell lines. Cancer Lett. 2016;375(2):313-22. doi: 10.1016/j.canlet.2016.03.017. [PubMed: 26975633].
  • 30. Stankovic T, Agathanggelou A, Oldreive C, Weston V, Moss P, Taylor A, et al. 5.2 combinatory effect of PARP inhibition with existing low-toxicity chromatin modifying agents (HDAC inhibitors) sensitizes CLL tumors with DNA damage response defect. Clin Lymphom Myelom Leukem. 2011;11:S243-4. doi: 10.1016/j.clml.2011.09.156.
  • 31. Konstantinopoulos PA, Wilson AJ, Saskowski J, Wass E, Khabele D. Suberoylanilide hydroxamic acid (SAHA) enhances olaparib activity by targeting homologous recombination DNA repair in ovarian cancer. Gynecol Oncol. 2014;133(3):599-606. doi: 10.1016/j.ygyno.2014.03.007. [PubMed: 24631446]. [PubMed Central: PMC4347923].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments