Gene, Cell and Tissue

Published by: Kowsar

Hsp90 Structure and Function in Cancer

Nassim Faridi 1 , * and Arezou Ghahghaei 2 , **
Authors Information
1 Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
2 Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
Corresponding Authors:
Article information
  • Gene, Cell and Tissue: July 2018, 5 (3); e81887
  • Published Online: November 11, 2018
  • Article Type: Review Article
  • Received: July 8, 2018
  • Revised: October 23, 2018
  • Accepted: October 24, 2018
  • DOI: 10.5812/gct.81887

To Cite: Faridi N, Ghahghaei A. Hsp90 Structure and Function in Cancer, Gene Cell Tissue. 2018 ; 5(3):e81887. doi: 10.5812/gct.81887.

Copyright © 2018, Gene, Cell and Tissue. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. HSP90 Structure and Function
3. The Heat-Shock Response (HSR)
4. HSPs Alterations in Malignancy
5. Conclusions
  • 1. Wegele H, Muller L, Buchner J. Hsp70 and Hsp90--a relay team for protein folding. Rev Physiol Biochem Pharmacol. 2004;151:1-44. doi: 10.1007/s10254-003-0021-1. [PubMed: 14740253].
  • 2. Ellis RJ, van der Vies SM. Molecular chaperones. Annu Rev Biochem. 1991;60:321-47. doi: 10.1146/ [PubMed: 1679318].
  • 3. Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004;5(10):781-91. doi: 10.1038/nrm1492. [PubMed: 15459659].
  • 4. Marcu MG, Schulte TW, Neckers L. Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst. 2000;92(3):242-8. [PubMed: 10655441].
  • 5. Freeman BC, Yamamoto KR. Disassembly of transcriptional regulatory complexes by molecular chaperones. Science. 2002;296(5576):2232-5. doi: 10.1126/science.1073051. [PubMed: 12077419].
  • 6. Picard D, Khursheed B, Garabedian MJ, Fortin MG, Lindquist S, Yamamoto KR. Reduced levels of hsp90 compromise steroid receptor action in vivo. Nature. 1990;348(6297):166-8. doi: 10.1038/348166a0. [PubMed: 2234079].
  • 7. Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science. 2002;295(5561):1852-8. doi: 10.1126/science.1068408. [PubMed: 11884745].
  • 8. Morimoto RI, Kline MP, Bimston DN, Cotto JJ. The heat-shock response: Regulation and function of heat-shock proteins and molecular chaperones. Essays Biochem. 1997;32:17-29. [PubMed: 9493008].
  • 9. Powers MV, Workman P. Inhibitors of the heat shock response: Biology and pharmacology. FEBS Lett. 2007;581(19):3758-69. doi: 10.1016/j.febslet.2007.05.040. [PubMed: 17559840].
  • 10. Jakob U, Gaestel M, Engel K, Buchner J. Small heat shock proteins are molecular chaperones. J Biol Chem. 1993;268(3):1517-20. [PubMed: 8093612].
  • 11. Whitesell L, Lindquist SL. HSP90 and the chaperoning of cancer. Nat Rev Cancer. 2005;5(10):761-72. doi: 10.1038/nrc1716. [PubMed: 16175177].
  • 12. Pratt WB. The hsp90-based chaperone system: Involvement in signal transduction from a variety of hormone and growth factor receptors. Proc Soc Exp Biol Med. 1998;217(4):420-34. [PubMed: 9521088].
  • 13. Messaoudi S, Peyrat JF, Brion JD, Alami M. Recent advances in Hsp90 inhibitors as antitumor agents. Anticancer Agents Med Chem. 2008;8(7):761-82. [PubMed: 18855578].
  • 14. Munster PN, Marchion DC, Basso AD, Rosen N. Degradation of HER2 by ansamycins induces growth arrest and apoptosis in cells with HER2 overexpression via a HER3, phosphatidylinositol 3'-kinase-AKT-dependent pathway. Cancer Res. 2002;62(11):3132-7. [PubMed: 12036925].
  • 15. Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, et al. Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol Cell Biol. 1996;16(10):5839-45. [PubMed: 8816498]. [PubMed Central: PMC231585].
  • 16. Stepanova L, Leng X, Parker SB, Harper JW. Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev. 1996;10(12):1491-502. [PubMed: 8666233].
  • 17. Redlak MJ, Miller TA. Targeting PI3K/Akt/HSP90 signaling sensitizes gastric cancer cells to deoxycholate-induced apoptosis. Dig Dis Sci. 2011;56(2):323-9. doi: 10.1007/s10620-010-1294-2. [PubMed: 20585984].
  • 18. Onnis B, Rapisarda A, Melillo G. Development of HIF-1 inhibitors for cancer therapy. J Cell Mol Med. 2009;13(9A):2780-6. doi: 10.1111/j.1582-4934.2009.00876.x. [PubMed: 19674190]. [PubMed Central: PMC2832082].
  • 19. Stellas D, El Hamidieh A, Patsavoudi E. Monoclonal antibody 4C5 prevents activation of MMP2 and MMP9 by disrupting their interaction with extracellular HSP90 and inhibits formation of metastatic breast cancer cell deposits. BMC Cell Biol. 2010;11:51. doi: 10.1186/1471-2121-11-51. [PubMed: 20602761]. [PubMed Central: PMC2914660].
  • 20. Richter K, Buchner J. Hsp90: Chaperoning signal transduction. J Cell Physiol. 2001;188(3):281-90. doi: 10.1002/jcp.1131. [PubMed: 11473354].
  • 21. Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP. Crystal structure of an Hsp90-geldanamycin complex: Targeting of a protein chaperone by an antitumor agent. Cell. 1997;89(2):239-50. [PubMed: 9108479].
  • 22. Ghahghaei A, Bathaie SZ, Bahraminejad E. Mechanisms of the effects of crocin on aggregation and deposition of Aβ1-40 fibrils in Alzheimer’s disease. Int J Pept Res Ther. 2012;18(4):347-51. doi: 10.1007/s10989-012-9308-x.
  • 23. Ghahghaei A, Bathaie SZ, Kheirkhah H, Bahraminejad E. The protective effect of crocin on the amyloid fibril formation of Abeta42 peptide in vitro. Cell Mol Biol Lett. 2013;18(3):328-39. doi: 10.2478/s11658-013-0092-1. [PubMed: 23737042].
  • 24. Ghahghaei A, Bathaie SZ, Shahraki A, Rahmany Asgarabad F. Comparison of the chaperoning action of glycerol and β-casein on aggregation of proteins in the presence of crowding agent. Int J Pept Res Ther. 2011;17(2):101-11. doi: 10.1007/s10989-011-9247-y.
  • 25. Ghahghaei A, Divsalar A, Faridi N. The effects of molecular crowding on the amyloid fibril formation of alpha-lactalbumin and the chaperone action of alpha-casein. Protein J. 2010;29(4):257-64. doi: 10.1007/s10930-010-9247-3. [PubMed: 20496103].
  • 26. Ghahghaei A, Mohammadian S. The effect of Arg on the structure perturbation and chaperone activity of alpha-crystallin in the presence of the crowding agent, dextran. Appl Biochem Biotechnol. 2014;174(2):739-50. doi: 10.1007/s12010-014-1092-y. [PubMed: 25091326].
  • 27. Pratt WB, Toft DO. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood). 2003;228(2):111-33. [PubMed: 12563018].
  • 28. Bagatell R, Whitesell L. Altered Hsp90 function in cancer: A unique therapeutic opportunity. Mol Cancer Ther. 2004;3(8):1021-30. [PubMed: 15299085].
  • 29. Solit DB, Chiosis G. Development and application of Hsp90 inhibitors. Drug Discov Today. 2008;13(1-2):38-43. doi: 10.1016/j.drudis.2007.10.007. [PubMed: 18190862].
  • 30. Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev. 1997;18(3):306-60. doi: 10.1210/edrv.18.3.0303. [PubMed: 9183567].
  • 31. Young JC, Moarefi I, Hartl FU. Hsp90: A specialized but essential protein-folding tool. J Cell Biol. 2001;154(2):267-73. [PubMed: 11470816]. [PubMed Central: PMC2150759].
  • 32. Dutta R, Inouye M. GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci. 2000;25(1):24-8. doi: 10.1016/s0968-0004(99)01503-0.
  • 33. Calderwood SK, Gong J, Murshid A. Extracellular HSPs: The complicated roles of extracellular HSPs in immunity. Front Immunol. 2016;7:159. doi: 10.3389/fimmu.2016.00159. [PubMed: 27199984]. [PubMed Central: PMC4842758].
  • 34. Tsutsumi S, Neckers L. Extracellular heat shock protein 90: A role for a molecular chaperone in cell motility and cancer metastasis. Cancer Sci. 2007;98(10):1536-9. doi: 10.1111/j.1349-7006.2007.00561.x. [PubMed: 17645779].
  • 35. Ullrich SJ, Robinson EA, Law LW, Willingham M, Appella E. A mouse tumor-specific transplantation antigen is a heat shock-related protein. P Natl Acad Sci (PNAS). 1986;83(10):3121-5. doi: 10.1073/pnas.83.10.3121.
  • 36. Lee J, Zhang LL, Wu W, Guo H, Li Y, Sukhanova M, et al. Activation of MYC, a bona fide client of HSP90, contributes to intrinsic ibrutinib resistance in mantle cell lymphoma. Blood Adv. 2018;2(16):2039-51. doi: 10.1182/bloodadvances.2018016048. [PubMed: 30115641]. [PubMed Central: PMC6113611].
  • 37. Sreedhar AS, Kalmar E, Csermely P, Shen YF. Hsp90 isoforms: Functions, expression and clinical importance. FEBS Lett. 2004;562(1-3):11-5. [PubMed: 15069952].
  • 38. Csermely P, Schnaider T, So"ti C, Prohászka Z, Nardai G. The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacol Ther. 1998;79(2):129-68. doi: 10.1016/s0163-7258(98)00013-8.
  • 39. Hickey E, Brandon SE, Sadis S, Smale G, Weber LA. Molecular cloning of sequences encoding the human heat-shock proteins and their expression during hyperthermia. Gene. 1986;43(1-2):147-54. [PubMed: 3019832].
  • 40. Goetz MP, Toft DO, Ames MM, Erlichman C. The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol. 2003;14(8):1169-76. [PubMed: 12881371].
  • 41. Wandinger SK, Richter K, Buchner J. The Hsp90 chaperone machinery. J Biol Chem. 2008;283(27):18473-7. doi: 10.1074/jbc.R800007200. [PubMed: 18442971].
  • 42. Smith DF, Whitesell L, Nair SC, Chen S, Prapapanich V, Rimerman RA. Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol. 1995;15(12):6804-12. [PubMed: 8524246]. [PubMed Central: PMC230934].
  • 43. Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell. 1997;90(1):65-75. [PubMed: 9230303].
  • 44. Verba KA, Wang RY, Arakawa A, Liu Y, Shirouzu M, Yokoyama S, et al. Atomic structure of Hsp90-Cdc37-Cdk4 reveals that Hsp90 traps and stabilizes an unfolded kinase. Science. 2016;352(6293):1542-7. doi: 10.1126/science.aaf5023. [PubMed: 27339980]. [PubMed Central: PMC5373496].
  • 45. Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B, et al. Structural and functional analysis of the middle segment of hsp90: Implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell. 2003;11(3):647-58. [PubMed: 12667448].
  • 46. Pearl LH. Hsp90 and Cdc37 -- a chaperone cancer conspiracy. Curr Opin Genet Dev. 2005;15(1):55-61. doi: 10.1016/j.gde.2004.12.011. [PubMed: 15661534].
  • 47. Soti C, Racz A, Csermely P. A Nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. N-terminal nucleotide binding unmasks a C-terminal binding pocket. J Biol Chem. 2002;277(9):7066-75. doi: 10.1074/jbc.M105568200. [PubMed: 11751878].
  • 48. Meyer P, Prodromou C, Liao C, Hu B, Mark Roe S, Vaughan CK, et al. Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. EMBO J. 2004;23(3):511-9. doi: 10.1038/sj.emboj.7600060. [PubMed: 14739935]. [PubMed Central: PMC1271799].
  • 49. Scheufler C, Brinker A, Bourenkov G, Pegoraro S, Moroder L, Bartunik H, et al. Structure of TPR domain-peptide complexes: Critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine. Cell. 2000;101(2):199-210. doi: 10.1016/S0092-8674(00)80830-2. [PubMed: 10786835].
  • 50. Roe SM, Ali MM, Meyer P, Vaughan CK, Panaretou B, Piper PW, et al. The mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37). Cell. 2004;116(1):87-98. [PubMed: 14718169].
  • 51. Street TO, Lavery LA, Agard DA. Substrate binding drives large-scale conformational changes in the Hsp90 molecular chaperone. Mol Cell. 2011;42(1):96-105. doi: 10.1016/j.molcel.2011.01.029. [PubMed: 21474071]. [PubMed Central: PMC3105473].
  • 52. Vaughan CK, Gohlke U, Sobott F, Good VM, Ali MM, Prodromou C, et al. Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell. 2006;23(5):697-707. doi: 10.1016/j.molcel.2006.07.016. [PubMed: 16949366]. [PubMed Central: PMC5704897].
  • 53. Hagn F, Lagleder S, Retzlaff M, Rohrberg J, Demmer O, Richter K, et al. Structural analysis of the interaction between Hsp90 and the tumor suppressor protein p53. Nat Struct Mol Biol. 2011;18(10):1086-93. doi: 10.1038/nsmb.2114. [PubMed: 21892170].
  • 54. Shiau AK, Harris SF, Southworth DR, Agard DA. Structural analysis of E. coli Hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell. 2006;127(2):329-40. doi: 10.1016/j.cell.2006.09.027. [PubMed: 17055434].
  • 55. Krukenberg KA, Street TO, Lavery LA, Agard DA. Conformational dynamics of the molecular chaperone Hsp90. Q Rev Biophys. 2011;44(2):229-55. doi: 10.1017/S0033583510000314. [PubMed: 21414251]. [PubMed Central: PMC5070531].
  • 56. Prodromou C. The ‘active life’ of Hsp90 complexes. Biochim Biophys Acta. 2012;1823(3):614-23. doi: 10.1016/j.bbamcr.2011.07.020. [PubMed: 21840346]. [PubMed Central: PMC3793855].
  • 57. Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet. 2003;33(1):70-4. doi: 10.1038/ng1067. [PubMed: 12483213].
  • 58. Smith DF, Whitesell L, Katsanis E. Molecular chaperones: Biology and prospects for pharmacological intervention. Pharmacol Rev. 1998;50(4):493-514. [PubMed: 9860803].
  • 59. Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological evolution. Nature. 1998;396(6709):336-42. doi: 10.1038/24550. [PubMed: 9845070].
  • 60. Ruden DM, Garfinkel MD, Sollars VE, Lu X. Waddington's widget: Hsp90 and the inheritance of acquired characters. Semin Cell Dev Biol. 2003;14(5):301-10. [PubMed: 14986860].
  • 61. Sangster TA, Lindquist S, Queitsch C. Under cover: Causes, effects and implications of Hsp90-mediated genetic capacitance. Bioessays. 2004;26(4):348-62. doi: 10.1002/bies.20020. [PubMed: 15057933].
  • 62. Rutherford SL. Between genotype and phenotype: Protein chaperones and evolvability. Nat Rev Genet. 2003;4(4):263-74. doi: 10.1038/nrg1041. [PubMed: 12671657].
  • 63. Agard DA, Elnatan D. Modulation of mitochondrial Hsp90 (TRAP1) ATPase activity by calcium and magnesium. bioRxiv. 2018:300038. doi: 10.1101/300038.
  • 64. Matassa DS, Agliarulo I, Avolio R, Landriscina M, Esposito F. TRAP1 regulation of cancer metabolism: Dual role as oncogene or tumor suppressor. Genes (Basel). 2018;9(4). doi: 10.3390/genes9040195. [PubMed: 29621137]. [PubMed Central: PMC5924537].
  • 65. Fitzgerald JC, Zimprich A, Carvajal Berrio DA, Schindler KM, Maurer B, Schulte C, et al. Metformin reverses TRAP1 mutation-associated alterations in mitochondrial function in Parkinson's disease. Brain. 2017;140(9):2444-59. doi: 10.1093/brain/awx202. [PubMed: 29050400].
  • 66. Chen Y, Chen C, Ma C, Sun S, Zhang J, Sun Y. Expression of heat-shock protein gp96 in gallbladder cancer and its prognostic clinical significance. Int J Clin Exp Pathol. 2015;8(2):1946-53. [PubMed: 25973087]. [PubMed Central: PMC4396202].
  • 67. Pak MG, Koh HJ, Roh MS. Clinicopathologic significance of TRAP1 expression in colorectal cancer: A large scale study of human colorectal adenocarcinoma tissues. Diagn Pathol. 2017;12(1):6. doi: 10.1186/s13000-017-0598-3. [PubMed: 28088229]. [PubMed Central: PMC5237536].
  • 68. Jing R, Duncan CB, Duncan SA. A small-molecule screen reveals that HSP90beta promotes the conversion of induced pluripotent stem cell-derived endoderm to a hepatic fate and regulates HNF4A turnover. Development. 2017;144(10):1764-74. doi: 10.1242/dev.146845. [PubMed: 28360131]. [PubMed Central: PMC5450838].
  • 69. Gatenby RA, Vincent TL. An evolutionary model of carcinogenesis. Cancer Res. 2003;63(19):6212-20. [PubMed: 14559806].
  • 70. Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, et al. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J. 1999;18(21):5943-52. doi: 10.1093/emboj/18.21.5943. [PubMed: 10545106]. [PubMed Central: PMC1171660].
  • 71. Dai C, Whitesell L, Rogers AB, Lindquist S. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell. 2007;130(6):1005-18. doi: 10.1016/j.cell.2007.07.020. [PubMed: 17889646]. [PubMed Central: PMC2586609].
  • 72. Birch-Machin I, Gao S, Huen D, McGirr R, White RA, Russell S. Genomic analysis of heat-shock factor targets in Drosophila. Genome Biol. 2005;6(7):R63. doi: 10.1186/gb-2005-6-7-r63. [PubMed: 15998452]. [PubMed Central: PMC1175994].
  • 73. Takayama S, Reed JC, Homma S. Heat-shock proteins as regulators of apoptosis. Oncogene. 2003;22(56):9041-7. doi: 10.1038/sj.onc.1207114. [PubMed: 14663482].
  • 74. Mosser DD, Morimoto RI. Molecular chaperones and the stress of oncogenesis. Oncogene. 2004;23(16):2907-18. doi: 10.1038/sj.onc.1207529. [PubMed: 15077153].
  • 75. Yano M, Naito Z, Tanaka S, Asano G. Expression and roles of heat shock proteins in human breast cancer. Jpn J Cancer Res. 1996;87(9):908-15. [PubMed: 8878452]. [PubMed Central: PMC5921196].
  • 76. Trieb K, Gerth R, Holzer G, Grohs JG, Berger P, Kotz R. Antibodies to heat shock protein 90 in osteosarcoma patients correlate with response to neoadjuvant chemotherapy. Br J Cancer. 2000;82(1):85-7. doi: 10.1054/bjoc.1999.0881. [PubMed: 10638971]. [PubMed Central: PMC2363193].
  • 77. Jaattela M. Escaping cell death: Survival proteins in cancer. Exp Cell Res. 1999;248(1):30-43. doi: 10.1006/excr.1999.4455. [PubMed: 10094811].
  • 78. Sliutz G, Karlseder J, Tempfer C, Orel L, Holzer G, Simon MM. Drug resistance against gemcitabine and topotecan mediated by constitutive hsp70 overexpression in vitro: Implication of quercetin as sensitiser in chemotherapy. Br J Cancer. 1996;74(2):172-7. [PubMed: 8688318]. [PubMed Central: PMC2074570].
  • 79. Vanden Berghe T, Kalai M, van Loo G, Declercq W, Vandenabeele P. Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J Biol Chem. 2003;278(8):5622-9. doi: 10.1074/jbc.M208925200. [PubMed: 12441346].
  • 80. Chen G, Cao P, Goeddel DV. TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell. 2002;9(2):401-10. [PubMed: 11864612].
  • 81. Falsone SF, Leptihn S, Osterauer A, Haslbeck M, Buchner J. Oncogenic mutations reduce the stability of SRC kinase. J Mol Biol. 2004;344(1):281-91. doi: 10.1016/j.jmb.2004.08.091. [PubMed: 15504417].
  • 82. Oppermann H, Levinson W, Bishop JM. A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat-shock protein. Proc Natl Acad Sci U S A. 1981;78(2):1067-71. [PubMed: 6262754]. [PubMed Central: PMC319947].
  • 83. Muller L, Schaupp A, Walerych D, Wegele H, Buchner J. Hsp90 regulates the activity of wild type p53 under physiological and elevated temperatures. J Biol Chem. 2004;279(47):48846-54. doi: 10.1074/jbc.M407687200. [PubMed: 15358771].
  • 84. Walerych D, Kudla G, Gutkowska M, Wawrzynow B, Muller L, King FW, et al. Hsp90 chaperones wild-type p53 tumor suppressor protein. J Biol Chem. 2004;279(47):48836-45. doi: 10.1074/jbc.M407601200. [PubMed: 15358769].
  • 85. Whitesell L, Sutphin PD, Pulcini EJ, Martinez JD, Cook PH. The physical association of multiple molecular chaperone proteins with mutant p53 is altered by geldanamycin, an hsp90-binding agent. Mol Cell Biol. 1998;18(3):1517-24. [PubMed: 9488468]. [PubMed Central: PMC108866].
  • 86. Eustace BK, Sakurai T, Stewart JK, Yimlamai D, Unger C, Zehetmeier C, et al. Functional proteomic screens reveal an essential extracellular role for hsp90 alpha in cancer cell invasiveness. Nat Cell Biol. 2004;6(6):507-14. doi: 10.1038/ncb1131. [PubMed: 15146192].
  • 87. Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem. 1999;42(2):260-6. doi: 10.1021/jm980403y. [PubMed: 9925731].
  • 88. Xu W, Marcu M, Yuan X, Mimnaugh E, Patterson C, Neckers L. Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc Natl Acad Sci U S A. 2002;99(20):12847-52. doi: 10.1073/pnas.202365899. [PubMed: 12239347]. [PubMed Central: PMC130548].
  • 89. Castagnola P, Bellese G, Birocchi F, Gagliani MC, Tacchetti C, Cortese K. Identification of an HSP90 modulated multi-step process for ERBB2 degradation in breast cancer cells. Oncotarget. 2016;7(51):85411-29. doi: 10.18632/oncotarget.13392. [PubMed: 27863425]. [PubMed Central: PMC5356745].
  • 90. Morimoto RI, Santoro MG. Stress-inducible responses and heat shock proteins: New pharmacologic targets for cytoprotection. Nat Biotechnol. 1998;16(9):833-8. doi: 10.1038/nbt0998-833. [PubMed: 9743115].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments