Gene, Cell and Tissue

Published by: Neoscriber Demo Publisher

The Effects of Celecoxib on Rotenone-Induced Rat Model of Parkinson’s Disease: Suppression of Neuroinflammation and Oxidative Stress-Mediated Apoptosis

Maryam Sarbishegi ORCID 1 and Enam Alhagh Charkhat Gorgich ORCID 2 , 3 , 4 , *
Authors Information
1 Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
2 Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
3 Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
4 Students’ Scientific Association of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
Article information
  • Gene, Cell and Tissue: April 30, 2019, 6 (2); e92178
  • Published Online: May 6, 2019
  • Article Type: Research Article
  • Received: April 11, 2019
  • Revised: April 27, 2019
  • Accepted: May 1, 2019
  • DOI: 10.5812/gct.92178

To Cite: Sarbishegi M, Charkhat Gorgich E A. The Effects of Celecoxib on Rotenone-Induced Rat Model of Parkinson’s Disease: Suppression of Neuroinflammation and Oxidative Stress-Mediated Apoptosis, Gene Cell Tissue. 2019 ; 6(2):e92178. doi: 10.5812/gct.92178.

Copyright © 2019, Gene, Cell and Tissue. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Methods
4. Results
5. Discussion
  • 1. De Virgilio A, Greco A, Fabbrini G, Inghilleri M, Rizzo MI, Gallo A, et al. Corrigendum to "Parkinson's disease: Autoimmunity and neuroinflammation". Autoimmun Rev. 2016;15(12):1210. doi: 10.1016/j.autrev.2016.09.027. [PubMed: 27725149].
  • 2. Heidari Z, Moghtaderi A, Mahmoudzadeh-Sagheb H, Gorgich EAC. Stereological evaluation of the brains in patients with parkinson’s disease compared to controls. Revist Roman Med Lab. 2017;25(3):265-74. doi: 10.1515/rrlm-2017-0010.
  • 3. Moradi F, Parsaie H, Charkhat Gorgich EA. Targeted delivery of therapeutic agents by smart nanocarrier for treatment of Parkinson’s disease: A novel brain targeting approach. Gene Cell Tissue. 2019;6(2). doi: 10.5812/gct.91213.
  • 4. Ehringer H, Hornykiewicz O. Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Parkinsonism Relat Disord. 1998;4(2):53-7. doi: 10.1016/S1353-8020(98)00012-1. [PubMed: 18591088].
  • 5. Gandhi S, Wood NW. Molecular pathogenesis of Parkinson's disease. Hum Mol Genet. 2005;14 Spec No. 2(18):2749-55. doi: 10.1093/hmg/ddi308. [PubMed: 16278972].
  • 6. Santiago RM, Barbieiro J, Lima MM, Dombrowski PA, Andreatini R, Vital MA. Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and rotenone models of Parkinson's disease are predominantly associated with serotonin and dopamine. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34(6):1104-14. doi: 10.1016/j.pnpbp.2010.06.004. [PubMed: 20547199].
  • 7. Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. J Parkinsons Dis. 2013;3(4):461-91. doi: 10.3233/JPD-130230. [PubMed: 24252804]. [PubMed Central: PMC4135313].
  • 8. Liu B, Gao HM, Hong JS. Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: Role of neuroinflammation. Environ Health Perspect. 2003;111(8):1065-73. doi: 10.1289/ehp.6361. [PubMed: 12826478]. [PubMed Central: PMC1241555].
  • 9. Blesa J, Phani S, Jackson-Lewis V, Przedborski S. Classic and new animal models of Parkinson's disease. J Biomed Biotechnol. 2012;2012:845618. doi: 10.1155/2012/845618. [PubMed: 22536024]. [PubMed Central: PMC3321500].
  • 10. Bove J, Perier C. Neurotoxin-based models of Parkinson's disease. Neuroscience. 2012;211:51-76. doi: 10.1016/j.neuroscience.2011.10.057. [PubMed: 22108613].
  • 11. Tieu K. A guide to neurotoxic animal models of Parkinson's disease. Cold Spring Harb Perspect Med. 2011;1(1). a009316. doi: 10.1101/cshperspect.a009316. [PubMed: 22229125]. [PubMed Central: PMC3234449].
  • 12. Alam M, Mayerhofer A, Schmidt WJ. The neurobehavioral changes induced by bilateral rotenone lesion in medial forebrain bundle of rats are reversed by L-DOPA. Behav Brain Res. 2004;151(1-2):117-24. doi: 10.1016/j.bbr.2003.08.014. [PubMed: 15084427].
  • 13. Sanchez-Pernaute R, Ferree A, Cooper O, Yu M, Brownell AL, Isacson O. Selective COX-2 inhibition prevents progressive dopamine neuron degeneration in a rat model of Parkinson's disease. J Neuroinflammation. 2004;1(1):6. doi: 10.1186/1742-2094-1-6. [PubMed: 15285796]. [PubMed Central: PMC483059].
  • 14. Schmidt WJ, Alam M. Controversies on new animal models of Parkinson's disease pro and con: the rotenone model of Parkinson's disease (PD). J Neural Transm Suppl. 2006;(70):273-6. doi: 10.1007/978-3-211-45295-0_42. [PubMed: 17017541].
  • 15. Sarbishegi M, Alhagh Charkhat Gorgich E, Khajavi O, Komeili G, Salimi S. The neuroprotective effects of hydro-alcoholic extract of olive (Olea europaea L.) leaf on rotenone-induced Parkinson's disease in rat. Metab Brain Dis. 2018;33(1):79-88. doi: 10.1007/s11011-017-0131-0. [PubMed: 29039078].
  • 16. Teismann P, Tieu K, Choi DK, Wu DC, Naini A, Hunot S, et al. Cyclooxygenase-2 is instrumental in Parkinson's disease neurodegeneration. Proc Natl Acad Sci U S A. 2003;100(9):5473-8. doi: 10.1073/pnas.0837397100. [PubMed: 12702778]. [PubMed Central: PMC154369].
  • 17. Cowley TR, Fahey B, O'Mara SM. COX-2, but not COX-1, activity is necessary for the induction of perforant path long-term potentiation and spatial learning in vivo. Eur J Neurosci. 2008;27(11):2999-3008. doi: 10.1111/j.1460-9568.2008.06251.x. [PubMed: 18540883].
  • 18. Akram A, Gibson CL, Grubb BD. Neuroprotection mediated by the EP(4) receptor avoids the detrimental side effects of COX-2 inhibitors following ischaemic injury. Neuropharmacology. 2013;65:165-72. doi: 10.1016/j.neuropharm.2012.09.010. [PubMed: 23041537].
  • 19. Serrano GE, Lelutiu N, Rojas A, Cochi S, Shaw R, Makinson CD, et al. Ablation of cyclooxygenase-2 in forebrain neurons is neuroprotective and dampens brain inflammation after status epilepticus. J Neurosci. 2011;31(42):14850-60. doi: 10.1523/JNEUROSCI.3922-11.2011. [PubMed: 22016518]. [PubMed Central: PMC4126152].
  • 20. Kaizaki A, Tien LT, Pang Y, Cai Z, Tanaka S, Numazawa S, et al. Celecoxib reduces brain dopaminergic neuronaldysfunction, and improves sensorimotor behavioral performance in neonatal rats exposed to systemic lipopolysaccharide. J Neuroinflammation. 2013;10:45. doi: 10.1186/1742-2094-10-45. [PubMed: 23561827]. [PubMed Central: PMC3637465].
  • 21. Fan LW, Kaizaki A, Tien LT, Pang Y, Tanaka S, Numazawa S, et al. Celecoxib attenuates systemic lipopolysaccharide-induced brain inflammation and white matter injury in the neonatal rats. Neuroscience. 2013;240:27-38. doi: 10.1016/j.neuroscience.2013.02.041. [PubMed: 23485816]. [PubMed Central: PMC3637873].
  • 22. Sarbishegi M, Mahmoudzadeh-Sagheb H, Heidari Z, Baharvand F. The protective effect of celecoxib on CA1 hippocampal neurons and oxidative stress in a rat model of parkinson’s disease. Acta Med Iran. 2019:94-102.
  • 23. Mehraein F, Sarbishegi M, Golipoor Z. Different effects of olive leaf extract on antioxidant enzyme activities in midbrain and dopaminergic neurons of Substantia Nigra in young and old rats. Histol Histopathol. 2016;31(4):425-31.
  • 24. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal Biochem. 1996;239(1):70-6. doi: 10.1006/abio.1996.0292. [PubMed: 8660627].
  • 25. Sarbishegi M, Alhagh Charkhat Gorgich E, Khajavi O. Olive leaves extract improved sperm quality and antioxidant status in the testis of rat exposed to rotenone. Nephro Urol Mon. 2017;9(3). e47127. doi: 10.5812/numonthly.47127.
  • 26. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-8. doi: 10.1016/0003-2697(79)90738-3. [PubMed: 36810].
  • 27. Anusha C, Sumathi T, Joseph LD. Protective role of apigenin on rotenone induced rat model of Parkinson's disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chem Biol Interact. 2017;269:67-79. doi: 10.1016/j.cbi.2017.03.016. [PubMed: 28389404].
  • 28. Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, et al. Oxidative stress in neurodegenerative diseases. Mol Neurobiol. 2016;53(6):4094-125. doi: 10.1007/s12035-015-9337-5. [PubMed: 26198567]. [PubMed Central: PMC4937091].
  • 29. Bartels AL, Leenders KL. Cyclooxygenase and neuroinflammation in Parkinson's disease neurodegeneration. Curr Neuropharmacol. 2010;8(1):62-8. doi: 10.2174/157015910790909485. [PubMed: 20808546]. [PubMed Central: PMC2866462].
  • 30. Reksidler AB, Lima MM, Zanata SM, Machado HB, da Cunha C, Andreatini R, et al. The COX-2 inhibitor parecoxib produces neuroprotective effects in MPTP-lesioned rats. Eur J Pharmacol. 2007;560(2-3):163-75. doi: 10.1016/j.ejphar.2006.12.032. [PubMed: 17320073].
  • 31. Choi DK, Pennathur S, Perier C, Tieu K, Teismann P, Wu DC, et al. Ablation of the inflammatory enzyme myeloperoxidase mitigates features of Parkinson's disease in mice. J Neurosci. 2005;25(28):6594-600. doi: 10.1523/JNEUROSCI.0970-05.2005. [PubMed: 16014720].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments